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LE'ITER TO THE EDITOR 

Excitations in the integrable model with two- and three-particle 
interactions 

R Z Barievt 
Facultd des Sciences et Techniques, Universite de Toun, 37200 Tours, France 

Received 31 October 1991 

Abstract. Excitations in the integrable model with two- and three-panicle interactions are 
calculated on the basis of the Bethe ansa@ equations obtained in a previous paper. It is 
shown that the model exhibits two kinds of excitations, onc connected with the massless 
panicle-hole excitations, the other with massive excitations corresponding to the collective 
motion of the pseudopanicles. 

Recently low-dimensional highly correlated systems have received a large amount of 
attention in connection with high-temperature superconductivity. A simple such model 
is the Hubbard model, which can be solved exactly in the one-dimensional case [I]. 
This model describes hopping of electrons on a one-dimensional chain with repulsion 
of two electrons on the same site due to Coulomb interaction. It can be presented as 
a two-sublattice model. In this case, electrons with different spins move along different 
sublattices and the four-fermion interaction between sublattices is the two-site one. 
This model was the single example of a discrete multi-sublattice integrable quantum 
system for a long time. 

In previous paper [2] a new integrable model was proposed. To some extent it may 
be considered as an alternative to the one-dimensional Hubbard model. As in the 
Hubbard model, this model describes the motion of highly correlated electrons, but 
the four-fermion interaction between sublattices is a three-particle one. This leads to 
interesting physical properties. In particular, one can see the analogy between this 
model and the Anderson model of high-temperature superconductivity on the triangular 
'lattice [3]. On the other hand the proposed model can be used in the study of 
quasi-one-dimensional conductors [4]. Therefore more detailed investigation of the 
properties of this model is desirable. 

In a previous paper we derived a nested set of Bethe ansatz equations which 
determine the eigenstates and the corresponding energies and momenta. From these 
equations we calculated the ground state of the system. In this letter we calculate the 
excited states. We will use the ideas and methods which were developed for the 
Heisenberg chain [ 5 ]  and the one-dimensional Hubbard model [4,6-81. 

The Hamiltonian of the model under consideration has the following form 
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where CA,) (cj( , ) )  creates (annihilates) an electron at the site j on the sublattice T 

( T = 1,2, e,(,) = c ~ ( ~ ) )  and nj(,) = cj(&,) is the corresponding number operator. As usual, 
periodic boundary conditions are imposed: c,+,(,)=c,(,), where L is the number of 
sites. Thus the Hamiltonian (1) consists of a kinetic term describing the electronic 
motion between atomic sites of the same sublattice and the repulsion of two electrons 
on neighbouring sites of different sublattices due to the Coulomb interaction (U> 0). 
The model (1) can be presented in terms of spin operators [Z]. 

In the previous work [2] we showed that the diagonalization of the Hamiltonian 
(1) can be reduced via a double Bethe ansatz to solving a set of coupled nonlinear 
equations. We also found the solution corresponding to the ground state of the system. 
The Bethe ansatz eigenstates of the Hamiltonian (1) are labelled by the sets of 
pseudo-momenta kj and additional quantities A, satisfying 

L&+ B(&-A, ,a ' )=2rh  ( j =  1,2 , .  . . , n )  

+ 

m 

6-1 

m 
B(A,-&,a' ) -  f3(Ae-A, ,2a' )=2rJ ,  (j3 = l , 2 , .  . . , m) 

1-1 1 = 1  

B ( k ,  a')=Ztan-'[coth(a') tanhfk] -TS  B ( k ,  a ) <  .T 

e" = (1 - U)-' (2) 

where 4 and J, are integer (half-integer) numbers for even (odd) m and n - m, 
respectively. Asolution of equations (2) corresponds to an eigenstate which is character- 
ized by the total number of electrons n and the number of electrons on the first 
sublattice m. The energy and the momentum of this eigenstate are, respectively, 

n 
E = -2 1 COS kj 

j = 1  

" 

(3) 

(4) 

The current into the system can be defined as in the one-dimensional Hubbard model 
[41 

n 

j =  x sink,. 
j - I  

The ground state is characterized by the following values of 4 and J, : 

I,"= j - ( n  + 1)/2 ( j =  1,2, .  . . , n )  
=j3 -(m+ 1)/2 ( p  =1,2,. . . , m), m =  n / 2 .  (6) 

In the thermodynamic limit (L+ 00, n + m) the pseudo-momenta kj tend to have a 
continuous distribution in the interval [-Q, Q] with a continuous density p(k) which 
is determined as a solution of integral equation [Z]. The parameter Q is connected 
with the electron density p = n/L 

In this letter we consider the excited states under the condition that the number of 
electrons n is conserved. These excitations consist of (i) massless excitations analogous 
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to those of the Heisenberg chain and (ii) massive excitations which are connected with 
the collective motion of the pseudo-particles. 

The first type of excitation corresponds to ( a )  'holes' in the k-distribution 

I .  J I?+ J 8.. " 0  J, =.IO, 

and ( b )  'particles' in the k-distribution 

4=1Y+ASn, Je = J; .  (9) 

The unification of these excitations corresponds to annihilation of a particle with 
momentum kh and creation of a particle with momentum k,. Thus we have an excitation 
of particle-hole type. 

The second type of excitation corresponds to ( a )  'holes' in the A-distribution 

J, = J ;  + 9,,, 1. J J  I? (10) 

and (b) 'strings' in the A-distribution. Strings are families of complex A which, for L 
tending to infinity, have the same real part. For an /-string, these are located at 

A f = A k + i ( l + l - 2 j ) a  j = 1 , 2  ,..., 1. (11) 

In calculating the excitations we follow the methods given by previous authors [4,5] 
who studied the one-dimensional Heisenberg and Hubbard models. We write equations 
(2) with numbers I ,  and .I, which are given by (8) and subtract from them the 
corresponding equations for the ground state. A straightforward manipulation leads 
to the energy of the excitations of the first type in the thermodyanmic limit 

Here Eo is the ground-state energy for an infinite system [2]. The corresponding 
momentum and current are 

Q 
P = I-, b(k) dk+  kp- kh 

j = 2[ 5_", b(k) cos k dk+  sin kp - sin kh . 
(13) 

1 
In these equations the function ;(k) is determined as a solution of the integral equation 

(14) 2?rb(k) - rQ p(k - k')G(k') dk' = 
J-Q 

where 

Equations (12)-(14) give the two-parameter excitations. If one parameter is fixed we 
obtain either hole-excitation (kp= Q) or particle-excitation (kh = Q). The solution of 
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the integral equation (14) can be obtained with the help of numerical calculation or 
using perturbation theory. In particular in the strong-coupling limit (a + co) we have 

E-Eo=2(coskh-coskp) +O(e-**) 1 
sin k,-sin kh+-(b-kh)]+O(e") sin Q 

Za-Q 

1 j = 2[ sin Q( s) +sin b-s in  kh 

+ [ I+- e: (Zsin'Q ~ + Q+f  sin 2Q)] +O(e-'-) 
2 a - Q  

Q = ap(l  +fp)-' -2 sin2[ap( 1 +fp)-'] e-2"+0(e-4"). 

Consider now the excitations of the second type. The number of holes in the A- 
distribution is always even. In the simplest case this number equals two. This state is 
obtained as a result of transfer of one electron from one sublattice to another. For 
such a transfer it is necessary to get over the electron repulsion. As a result there is a 
gap in the spectrum of excitations corresponding to holes in the A-distribution. In 
order to calculate the value of this gap consider equations (2) for values of I, and J, 
which are given by (6) but at m = ( n / Z ) - l ,  i.e. we suppose that the holes in the 
sequence of I ( & )  are located at 

Following the previous work [Z] we obtain for the energy of this state 
Q 

E-E0=2A A=I-Qp,(k)cos kdk  

where p,(k) is the solution of the integral equation 
Q 

-Q 
Zap,(k)- I p(k-k')pl(k') dk'=Z@,(k+ a) 

At a + 00 we have the following expansion for the gap 

+Q+fsinZQ +O(e-2m). 1 sin Q e-" [ 2 sin' Q 
2 a - Q  a 2 a - Q  

A=--- - 

Consider now the case of an arbitrary location of holes in the A-distribution. To 
calculate the energy and momentum in this case one has to write equations (2) for 
numbers I, and J,  (10) and subtract from them the corresponding equations for the 
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choice (15). Further calculation, which is analogous to the previous consideration, 
leads to the following results 

The function F(k) is a solution of the integral equation 

2 4 k ) -  
4 

p(k-  k')F(k') dk'= -I-, (Pz(k-A) dA+ 1; 'D2(k-A) dA. (19) Jp, 
At a + w  we have 

2e-" 
€(A) = A+- (Q-$ sin 2Q)( 1 +cos A) + O(e-'=) 

57 

2sin Q e-=. 2 sin' Q 
2 a - Q  A+, (m J(A)=- 

In addition to holes, excited states may contain conjugate pairs of complex A. (10). 
These excitations, though not contributing to the energy and momentum, do play a 
role in the classification of states leading to the degeneracy of the energy levels. 

Thus the energy spectrum of the model under consideration exhibits two kinds of 
excitations. The first kind is connected with massless particle-hole excitations and the 
second one with massive excitations corresponding to collective motion of the 
pseudoparticles. 

Part of inis work was performed during the stay of the author at the iiniversity of 
Tours, France. He would like to thank the Academy of Orlean-Tours for the invitation 
and kind hospitality. In addition, the author is grateful to the Scientific Council on 
High Temperature Superconductivity (USSR) for financial support under grant no 
91-151. 
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